VT-SENSOR AIR VELOCITY AND TEMP

- Ultra low velocity pressure measurement
- Traceable Calibration Certificate
- Excellent repeatability
- Self compensating zero
- Climate chamber compensated
- Long term span stability
- Ultra low hysteresis
- Unaffected by humidity
- Factory logged burn in time
- Transducer and PCB is made by CMR
- After Sales Service is provided by CMR
- 24 month warranty
- 20 Years field application experience

GENERAL DESCRIPTION
The VT-Sensor is a wall mount dual Velocity Pressure and Temperature transmitter which provides an output signal of 0...10V for both. The LCD connector always provides 0...10V for the air velocity. An optional LCD display can show the actual velocity or volume in m/s or m³/s.

4...20mA cannot be supplied with VT-Sensors. There are many Velocity Pressure ranges available from 0...6.45 m/s (0...25 Pa) up to 0...28.85 m/s (0...500 Pa). The maximum range is 129.10 m/s.

The temperature range is 5...50 ºC or up to 0...100 ºC.

Power supplies in DC or AC are standard.

THE TRANSDUCER
The transducer is manufactured by CMR and consists of precision engineered components, high quality metals and SMD electronics. The principle of the transducer is the measurement of the displacement of the linear diaphragm by means of a push and pull variable reluctance transducer which is not affected by Humidity, hence it can be used in many Industrial and Chemical applications even using high concentration of Formaldehyde.

There are no mechanical connections to any of the sensing coils and the diaphragm, hence extreme low pressures can be measured at excellent repeatability and minimal hysteresis.

The movement of the diaphragm is so small that no air volume is required to measure the air pressures over a distance of 200m.

The zero drift is uniquely minimized by the measuring coils which provide excellent self compensation. One coil measures positive and the other negative drift and therefore balances any excessive drift between two tolerance limits in its life cycle. The CMR Transducer has a proven track record of over 20 years. Finally, all CMR V-Sensors are temperature compensated in a computerised climate chamber and go through an ageing burn in cycle.

LCD DISPLAY
An Optional LCD Display indicates the actual Velocity in m/s or Volume in m³/s. The LCD is factory calibrated but the user can adjust the zero and span to suit other scales. The LCD display is fitted to the front lid and is for internal wall mount use.

LED DISPLAY
An Optional LED Display either 3 1/2 or 4 1/2 digit can be supplied which indicates the actual Velocity in m/s or Volume in m³/s. The LED display is fitted into the front lid. It shall provide IP65 protection and is intended for wall mount use. A remote LCD or LED can be connected to display the information locally.

TEMPERATURE SENSOR
The temperature sensor is built into a duct probe and comes complete with 5m cable ready for connection. The sensing element is linear and provides 10mV per ºC. The scaling of the output signal is done by the VT-Sensor.

DISPLAY AND SIGNAL DAMPENING
The displays can be smoothed by means of a switch (LCD) or a jumper (LED) on the rear independently of the output signal of the sensor. The output signal can be smoothed by means of the 'Slow' adjustment on the PCB of the V-Sensor. This damping acts on the 0...10V, 4...20mA and the Display simultaneously.

MAGNIFICATION FACTOR SCALING
The display's zero and span has been factory scaled during manufacture. The magnification Factor can be adjusted on the PCB Scaler to suit the CMR Flow Probes, Velo Probes and Velo Grids or any other velocity measurement devices.

ALUMINIUM ENCLOSURE
The VT-Sensor can be supplied in an IP65 Aluminium Enclosure with 6mm or 1/4" ferule compression fittings and stainless Cable Gland.

An optional IP65 LED display either 3 1/2 or 4 1/2 Digit is mounted into the Lid.

Stainless Steel Transducers can be supplied on request but then the Aluminium Enclosure shall always be supplied.
VT-SENSOR VELOCITY APPLICATIONS

TYPICAL VELOCITY PRESSURE MEASUREMENT WITH CMR VT-SENSORS AND TEMPERATURE MEASUREMENT

The CMR VT-Sensor is a true Velocity Pressure and Temperature Transmitter which has been designed to measure air volumes and temperatures in Ventilation Ducts accurately. The built in Square Root Extraction and Magnification Factor Scaling makes the VT-Sensor the most versatile instrument. It can display in m/s, m³/s or °C. Other displays such as m³/h, litres/s, litres/min or any imperial measurement units are available on request.

The VT-Sensor is ideal for wall or plant room panel mount applications. The CMR PVC tubing can be run up to 200m without losing accuracy of the measurement. The Temperature Sensor can run up to 20m.

The VT-Sensor is used for monitoring or controlling Volume Flow and temperature in Commercial or Process Applications.

The VT-Sensor is designed to be connected to any CMR Velo probes, Duct Probes or Velo grids, but it can also be connected to any existing or custom made duct Flow Measurement Device.

The measured values can be transmitted to remote display plates, Scada and BMS Monitoring Systems. Two output signal of 0..10V for volume and Temperature are standard. Calibration Certificates traceable to National Standards can be supplied with all VT-Sensors.

TYPICAL CMR AIR VOLUME MEASUREMENT APPLICATIONS WITH TEMPERATURE MEASUREMENT

CMR CONTROLS
Division of C.M.RICHTER EUROPE LTD

Copyright © 2000 CMR® C.M.RICHTER EUROPE LTD All rights reserved The information is subject to change without notice Issue GB 2 - 2 2000
The above schematic shows a practical application in Supply and Extract Air-Handling Unit Control Systems, where Supply and Extract Duct Volumes as well as temperature must be measured. The VT-Sensor is ideal for Fan Tracking, Fresh Air, Re-circulation Air control, temperature control and monitoring.

TYPICAL EXTRACT AIR VOLUME AND TEMPERATURE MEASUREMENT APPLICATIONS

- Extract Velo Probe Sensor
- Extract Velo Grid Sensor
- Extract Attenuator Flow Probe
- Extract Orifice Plate Sensor
GENERAL

The drawing shows a typical application for CMR velocity Velo Probes and VT-Sensors.

The supply air duct can either be fitted with one central Velo Probe or individual Velo Probes on each of its branches.

In many cases, the positions of the Velo Probes are very much dictated by the design of the building. The CMR Velo Probe can be fitted in almost any position in order to provide the necessary results.

In a single supply and single extract duct application the VT-Sensor measures the building's actual total supply and return volumes. As both VT-Sensors are calibrated to provide a linear air volume signal, tracking of supply and extract air is made simple.

The Velo probes are easily adjusted by the commissioning engineer during final commissioning.

For multiple duct applications, the total supply air volume is derived by adding measurements from individual ducts.

The same applies to the return air where the following formulae is specified as mentioned under the schematic on the right. Temperature Sensors are fitted on all ducts.

VT-SENSOR SCALING BY ADJUSTING THE VELO PROBES

Adjust the Impact Veloprobe to face the Airflow and and adjust the Static Veloprobe to approx. 40° away from the airflow.

Scaling the BMS in m/s

Look at the VT-Sensor label and scale BMS to 0V = 0 m/s and 10V = VT-Sensor range i.e. 12.91 m/s. Take a Pitot reading in the duct and if this is 5.00 m/s adjust the Static Veloprobe by turning it towards or away from the airflow until the BMS Screen shows 5.0 m/s.

Scaling the BMS in m3/s

Multiply the VT-Sensor range i.e. 12.91 m/s by the duct area i.e. 1m x 1m = 1m². The Sensor range is now 10V=12.91 m³/s. Scale the BMS to 12.91 m³/s and work out the Pitot readings in m³/s. If the Volume is 5.00 m³/s, turn the Static Veloprobe until the Screen shows 5.0 m³/s.

Calibrating by adjusting the Velo Probes

VT-SENSOR SCALING BY ADJUSTING THE ‘SCALER’

Adjust the Impact Veloprobe to face the Airflow and and adjust the Static Veloprobe to approx. 180° away from the airflow.

Scaling the BMS in m/s

Look at the VT-Sensor label and scale BMS to 0V = 0 m/s and 10V = VT-Sensor range i.e. 12.91 m/s. Take a Pitot reading and if this is 5.00 m/s adjust the VT-Sensor ‘Scaler’ Potentiometer until the BMS Screen shows 5.0 m/s.

Scaling the BMS in m³/s

Multiply the VT-Sensor range i.e. 12.91 m/s by the duct area i.e. 1m x 1m = 1m². The Sensor range is now 10V=12.91 m³/s. Scale the BMS to 12.91 m³/s and work out the Pitot readings in m³/s. If the Volume is 5.00 m³/s, turn the VT-Sensor ‘Scaler’ Potentiometer until the Screen shows 5.0 m³/s.

Calibrating by adjusting the V-Sensor scaler
The VT-Sensor's electronic is accessible by removing the Lid. Connect a Voltmeter to the Terminals 1 and 2 or use a malex connector on the LCD Display connector J7. The output signal on the LCD connector is always 0...10V for Velocity or Volume.

To check the Scaler, first pump up the sensor to its range i.e. 100 Pa and note down the voltage output in Linear Mode. If the output is i.e. 5V then the scaler has been set to calibrate the duct velocity.

The VT-Sensor has a built in temperature conditioning electronic which can convert the signal of the external temperature sensor to an output of 0..10V. The CMR temperature sensor has to be powered up between 4..31VDC and the output is linear 10mV per ºC. This means 20ºC is 0.20V. If 5..40ºC has to be scaled, inject 0.05V into terminal T and adjust the Span (P5) to 10.00V. Repeat a few times. The VT-Sensor is now conditioned to provide 0.10V over 5..40ºC. Please note that all VT-Sensors are factory calibrated and compensated. When re-adjusting the zero and span, the factory calibration and accuracy will change. Consult CMR.

Zero Adjustment
Switch Slide Switch to UP position which is the Linear Pressure Signal Output on the J2 Terminals. Turn Scaler fully clockwise with no scaling.

P1 scales the Zero of the Sensor. Turn the ‘SLOW’ P8 Potentiometer completely anti clockwise to remove any dampening. Remove all Tubes and let the Sensor settle.

If the Voltmeter is connected to the LCD connector or 1 and 2, adjust P1 until 0.00V is achieved.

Span Adjustment
Check the Zero Adjustment above first. P2 scales the Span of the VT-Sensor. Use any CMR Calibrator and pump up the positive nipple of the VT-Sensor to 20% of Full Scale as indicated on the label of the VT-Sensor i.e. a 100Pa Sensor would be pumped up to 20.0Pa. To check the Square Rooter switch the slide switch to DOWN position during measurement. The Results would be as follows:

20% = 20 Pa is 2.00V in Linear Mode
50% = 50 Pa is 5.00V in Linear Mode
50% = 50 Pa is 7.07V in Square Root Mode

Linearity Check
Use any CMR Calibrator and pump up the positive nipple of the VT-Sensor to 25% of Full Scale as indicated on the label of the VT-Sensor i.e. a 100Pa Sensor would be pumped up to 25.0Pa.

25% = 25 Pa or 2.50V
50% = 50 Pa or 5.00V
100% = 100 Pa or 10.00V

The Linearity is the accuracy of the Sensor less any Calibrator deviation. See the following Example:

- Zero of Sensor = 0.00 V Zero of Calibrator = 0.0Pa
- Span of Sensor = 7.55 V Span of Calibrator = 7.5Pa

The Sensor is 100% linear compared with the Calibrator.

Repeat the Zero and Span adjustments a few times.
VT-SENSOR ORDER DESCRIPTION

GENERAL
CMR manufactures a large range of VT-Sensors to suit many Velocity, Volume and Temperature measurement applications. Because of the variety of velocity pressure and temperature ranges and power supplies, it has been necessary to design an easy to use selection table for anybody to make up a VT-Sensor specification to satisfy a requirement. On the VT-Sensor Selection Table you will find all specifications available with the associated ordering Code.

VT-SENSOR PART NUMBER
The VT-Sensor Part Number starts with the selection of the enclosure which depends on the Tube connections. In the Example we have chosen Code '26A', which is a standard ABS VT-Sensor enclosure with 6 mm barbed nipples to fit CMR PVC Tube. The Part Number therefore starts with '26A'.

Smaller nipples with a 3 mm O/D to fit the small bore CMR Silicone Tube makes Panel installations easier. The Code is '26B'.

Aluminium enclosures are supplied with compression fittings to suit either Stainless or Copper Tube i.e ALU 6 mm Code '26C' or ALU 1/4" Code '26D'.

The Part Number extends to '26A 000'.

NEGATIVE PRESSURE RANGE
The Negative Range is not available with VT-Sensors as negative velocity pressures are never measured and cannot be square rooted. The Code '000' always applies to any VT-Sensors. The Part Number extends to '26A 000'.

VELOCITY PRESSURE RANGE
It is important to determine the duct velocity pressure. Normally, this information is supplied by the Designer of the Ventilation System. On the VT-Sensor Selection Table are a number of standard velocity pressures listed.

The Part Number extends to '26A 000 025'.

OUTPUT SIGNAL (Velocity/Volume)
The Industry Standard for Output Signals is 0…10V. The VT-Sensor cannot be supplied with any other output signal.

OUTPUT SIGNAL (Temperature)
The Industry Standard for Output Signals is 0…10V. The VT-Sensor cannot be supplied with any other output signal.

There are a variety of temperature ranges which can be calibrated.

5…30°C has the Code 'A'
5…40°C has the Code 'B'
5…50°C has the Code 'C'
5…100°C has the Code 'D'

In the Example, we have chosen 5…50°C which has the Code 'C'. The Part Number extends to '26A 000 025 C'.

POWER SUPPLY
The Industry Standard is 24VDC or 24VAC. 110VAC and 230VAC are less used today for safety and EMC protection reasons. The 15VDC versions are seldom used.

In the Example we have chosen 24VDC which has the Code '2'. The Part Number extends to '26A 000 025 C 2'.

INTERNAL LCD or LED BUILT INTO Lid
A 3 1/2 digit LCD Display can be supplied as an optional extra to be mounted into the Lid of the VT-Sensor. The LCD is a Liquid Crystal Display without illumination. The Protection is IP44 and is only suitable for indoor applications. This LCD is the most popular display as it incorporates the Engineering Units as legends i.e. m/s, m³/s or °C. The LCD connector provides Velocity/Volume only. To connect the LCD display to temperature it needs to be connected to terminal 3.

We have chosen this 3 1/2 digit LCD which has the Code 'A'. The Part Number extends to '26A 000 025 C A'.

Please Note, if an IP65 enclosure is required the red illuminated LED displays in 3 1/2 or 4 1/2 digits must be used. The legends are not available on these glasses.

SCALED UNITS
The range is printed on a product label fixed to the lid of the sensor. Normally, the range is printed as Pa/(m/s) but other ranges can be selected under this order code. If an LCD or LED is required then the LCD's or LED's must be scaled to suit the application i.e. 0-100 Pa (12.91m/s) which means it is scaled in m/s. The 3 1/2 Digit LCD Display has the additional benefit that a small legend m/s appears on the glass of the LCD. All other LED’s have no description on the glass.

The LCD or LED's can be scaled in m³/s, but the exact duct area must be known. Consult CMR to confirm the scaling.

We have chosen the Code '1'. The Part Number extends to '26A 000 025 C A 1'.

DECIMAL PLACES
If no LCD is fitted then this is N/A (not applicable). The 3 1/2 digit LCD can only display 1999 or 199.9 or 19.99 or 1.999. The 4 1/2 digit LCD or LED can display 19999 or 1999.9 or 199.99 or 19.999 all depending on the decimal place setting.

It is essential to know the velocity or volume in order to determine the display on the LCD/LED glass. In the example we have chosen one decimal place, which can display i.e. 12.9m/s.

One decimal place has the Code 'B'.

The Part Number extends to '26A 000 025 C A B'.

LINEARITY
The VT-Sensor is available in two Linearity Grades, 0.5% and 1.0% in Linear Mode which is 1% or 2% in Square Root Mode.

In the Example, we have used 0.5% which has the Code 'A'. The Part Number extends to '26A 000 025 C A B A'.

TRACEABLE CALIBRATION CERTIFICATE
The VT-Sensor can be supplied with a Calibration Certificate traceable to National Standard which has the Code 'T'.

In the Example we have to chose Code 'T'. The Part Number extends to '26A 000 025 C 2 A 1 B T'.

FINAL PART NUMBER
The Part Number to order is 26A000025C2A1BAT.

Now try and select your own VT-Sensor using the VT-Sensor
VT-SENSOR ORDER SELECTION TABLE

The selection Table has been prepared to make ordering easy. Each Column contains a number of different options which are available and a Part Number can be established depending on a specific requirement. The Example Part Number 26A 000 025 C 2 A 1 B A T which is printed above the Selection Table can be identified as being a VT-Sensor Velocity Pressure Sensor having 6mm barbed tube connectors with a Negative Range of 0 Pa and a Positive Range of 100 Pa (12.91m/s), with an Output Signal of 0-10V and a temperature range of 5..50ºC. The power Supply is 24VDC. The Sensor would be supplied with a 3 1/2 digit LCD Display mounted internally. The display is scaled in m/s. The Decimal Points are adjusted to 1 which indicates 0-12.9 m/s. The Linearity is 0.5% in Linear Mode and it comes with a traceable Calibration Certificate to National Standards.

EXAMPLE PART NUMBER SELECTION (The code after the (=) sign is used i.e. 6mm = 26A)

<table>
<thead>
<tr>
<th>26A</th>
<th>000</th>
<th>025</th>
<th>C</th>
<th>A</th>
<th>B</th>
<th>A</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>V-SENSOR</td>
<td>Negative</td>
<td>Positive</td>
<td>Temp.</td>
<td>Power</td>
<td>Internal</td>
<td>Scaled</td>
<td>Decimal</td>
</tr>
<tr>
<td>Part No.</td>
<td>Range</td>
<td>Range</td>
<td>Supply</td>
<td>Units</td>
<td>Places</td>
<td>Units</td>
<td></td>
</tr>
<tr>
<td>6mm = 26A</td>
<td>0 Pa = 000</td>
<td>25Pa (6.45m/s) = 010</td>
<td>5.. 30ºC = A</td>
<td>15 VDC = 1</td>
<td>NONE = N</td>
<td>m/s = 1</td>
<td>N/A = N</td>
</tr>
<tr>
<td>3mm = 26B</td>
<td>50Pa (9.12m/s) = 015</td>
<td>5.. 40ºC = B</td>
<td>24 VDC = 2</td>
<td>LCD 3 1/2 = A</td>
<td>Pa = 2</td>
<td>000 = A</td>
<td>1.0% = B</td>
</tr>
<tr>
<td>6cp = 26C</td>
<td>60Pa (10.00m/s) = 020</td>
<td>5.. 50ºC = C</td>
<td>24 VAC = 3</td>
<td>LED 3 1/2 = B</td>
<td>m/s = 3</td>
<td>00.0 = B</td>
<td></td>
</tr>
<tr>
<td>1/4cp = 26D</td>
<td>100Pa (12.91m/s) = 025</td>
<td>5.. 100ºC = D</td>
<td>110 VAC = 4</td>
<td>LED 4 1/2 = C</td>
<td>m3/h = 4</td>
<td>0.00 = C</td>
<td></td>
</tr>
<tr>
<td>125Pa (14.43m/s) = 030</td>
<td>230 VAC = 5</td>
<td>l/r/s = 5</td>
<td>.000 = D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150Pa (15.81m/s) = 035</td>
<td>Stainless</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200Pa (18.25m/s) = 040</td>
<td>6mm = 26A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6cp = 26E</td>
<td>250Pa (20.41m/s) = 045</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>300Pa (22.36m/s) = 050</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>400Pa (25.82m/s) = 055</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>500Pa (28.86m/s) = 060</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>750Pa (35.35m/s) = 065</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000Pa (40.82m/s) = 070</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1500Pa (50.00m/s) = 075</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000Pa (57.73m/s) = 080</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2500Pa (64.55m/s) = 085</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3000Pa (70.71m/s) = 090</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4000Pa (81.65m/s) = 095</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5000Pa (91.28m/s) = 100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6000Pa (100.00m/s) = 105</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7000Pa (108.01m/s) = 110</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8000Pa (115.47m/s) = 115</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9000Pa (122.47m/s) = 120</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10000Pa (129.10m/s) = 125</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HOW TO ORDER

Make up your own VT-Sensor selection below using the empty cells

EXAMPLE

A wall mount pressure transmitter is required of the Type VT-Sensor. The tube connections must be 6mm for CMR PVC Tube The negative pressure range must be 0 Pa (no others can be supplied) The positive pressure range must be +25Pa (6.45 m/s) The output signal must be 0-10V 5..100ºC. The power supply must be 24V AC isolated The internal LCD Display must be a 3 1/2 digit LCD with legends. The scaled units must be in metres/second (m/s) The indication must be 6.45 with two decimal places The linearity must be 1% of full scale The Certificate must be traceable to National Standards

Call CMR for assistance at any time

The part Number for this VT-Sensor is 26A 000 010 D 3 A 1 C B T
VT-SENSOR TECHNICAL SPECIFICATION

Measurement Range
See Order Selection Table VT-Sensor

Optional Range
Any Range from 25Pa (6.45m/s) up to 10 000Pa (129.10m/s)

Overload Capacity
Ranges 25Pa - 150Pa up to max 1400Pa. Ranges from 200 - 10000Pa 10 times of range

Media
Non Corrosive Gases such as Air, N2, O2, CO2, N2 O, inert Gases

Diaphragm Unit
Bronze Beryllium Copper suitable for high concentration of Formaldehyde - All Stainless on request.

AC Power Supplies
24 VAC 50/60Hz 140mA Fuse 300mA Auto Reset
110VAC 50/60Hz 32mA Fuse 315mA Wickmann
230VAC 50/60Hz 10mA Fuse 315mA Wickmann

DC Power Supplies
15 VDC smoothed. Sensor without remote LCD and Volt output only. (50mA)
24 VDC (19 to 31VDC) smoothed. Sensor with remote LCD output (80 mA)

Voltage Output Signal
0-10V (0...100% of Range) in linear or square root mode RL = 5kOhm min.

Velocity or Volume
The output voltage is the result of square rooting the linear pressure i.e. 100 Pa.
100 Pa square rooted = 10 m/s . Multiply the 10 m/s by the density of air x 1.291 = 12.91m/s

Voltage Output Signal
0...10VDC (0...100% of Range) RL = 5kOhm min.

Temperature
The output voltage is the result of scaling the input voltage from the temp sensor i.e. 5...100ºC = 0.95V
which is scaled to 0...10VDC.

Hysteresis/Repeatability
0.1% Typical of Full Scale for Velocity Pressure and 0.5% for temperature

Linearity (Accuracy)
+/− 0.5% or 1.0% of Full Scale in Pressure Mode and +/- 1.5ºC .

Zero Drift
0.05%K (+10°C to +50°C) Velocity Pressure only. (For Temperature consult CMR.)

Operating Temperature
-10°C to +70°C (temperature sensor only starts at 5°C)

Mounting Position
Vertical

Weight
0.7 kg

Electrical Connections
1 x PG13 Gland Internal Plugs with Screw Connections (Other Gland Sizes on request)

Air Tube Connections
Positive and Negative Pressure Barbed Nipple 6.5mm O/D x 15mm long or
Positive and Negative Pressure Straight Nipple 3.0mm O/D x 15mm long

Enclosure
ABS Grey Protection IP65 without LCD. With CMR LCD IP44 and ABS or ALU with/without LED IP65

Conformity
EN61326-1 EMC EN61010-1 SAFETY

Calibration Certificate
Can be supplied with Certificate traceable to National Standards for both Velocity Pressure and Temp.